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Abstract-Laminar mixed convection heat transfer in a horizontal isothermal cooled tube for high Rayleigh 
numbers and Prandtl numbers is investigated numerically in the present study. The inlet fluid with a fully 
developed inlet velocity and a constant inlet temperature T, is cooled in the tube with a constant wail 
temperature I&. Variation of the fluid and wall temperature difference and the heat transfer are governed 
by the Rayleigh number and the Graetz number. To achieve the high Rayleigh number solution in a 
sufficiently long range of Z, a robust scheme of weighting function for solving the energy equation and a 
control volume method for evaluating the wall temperature gradient are employed. The varying NU with 
Ra = 0 - 5 x i08 in the range of z = 04.8 is obtained. This extends the solution to three orders higher in 
Ra and one order longer in z than those in the literature. Several axial positions characterizing the Nusselt 
number curve for each Ra are identified and correlated. Comparisons of Nu with the existing experimental 

data for Ra in the orders of IO’-IO* are made. 

1. INTRODUCTION 

THE MIXED convection flow in a horizontal isothermal 
tube is three dimensional and it is hard to analyze 
theoretically. Thus, the early studies of the mixed con- 
vection flow in horizontal isothermal tubes were con- 
fined to the experimental works for different fluids 
with discrete Prandtl-numbers. Notable examples are 
the studies by Colburn [l] in air, water, and light oils ; 
Kern and Othmer [2] in three different oils; Eubank 
and Proctor [3] in petroleum and oils; Oliver [4] in 
water, ethyl alcohol, and 80 : 20 glycerol-water ; 
Brown and Thomas [5] in water; and Depew and 
August [6] in water, ethyl alcohol, and 80 : 20 glycerol- 
water. From the available data, correlations of the 
important parameters of the Nusselt, Graetz, Grashof 
and Prandtl numbers are obtained with uncertainty 
of about +40%. This value suggests immediately the 
difficulty of the problem and the need for the analysis 
of the heat transfer mechanism. It should be noted 
that all the correlations were derived under the con- 
dition of hydrodynamically fully developed flow at 
the inlet of heating or cooling section. 

Cheng ef at. [7] first carried out the order of mag- 
nitude analysis for this problem, and found that the 
inertia terms in the momentum equation and axial 
conduction term in the energy equation can be neg- 
lected when Pr 1 and Pe > 100. The assumption of 
large Pr and Pe made the marching numerical solution 
at each cross-section possible. The theoretical studies 
before Cheng ef al. [7] have been confined to the fully 
developed region of a uniform-heat-flux pipe, e.g. the 
perturbation~xpansion solutions of Morton [8] and 
Faris and Viskanta [9], and the numerical solutions 
of Siegwarth and Hanratty [lo] and Newell and 

Bergles [l 11. Morton [S] got his perturbation equa- 
tions with Rayleigh number as a perturbation par- 
ameter by ass~ing a constant axial temperature and 
pressure gradients and extended the series to Rayleigh 
number of about 103. Van Dyke [12] employed the 
Domb-Sykes plot and the Euler transformation to 
extend the Morton’s series for Rayleigh number up to 
106. 

In the past two decades, after Cheng et al. [7], 
almost all the numerical studies for mixed convection 
in horizontal tubes employed the large Pr ass~ption. 
Heiber and Sreenivasan [ 131 carried out a theoretical 
analysis for mixed convection in an isothermally 
heated horizontal pipe with a uniform axial velocity 
profile at the pipe inlet for a large Pradtl number fluid. 
Ou and Cheng [ 141 obtained the numerical solutions 
of horizontal tubes with constant wall temperature 
for Ra up to lo5 by using central difference for the 
convection terms. Hwang and Lin [IS] employed Pat- 
ankar’s power law scheme, boundary-vorti~ity 
method and Du Fort-Frankel method to solve the 
same problem for z = 0 - 0.1 with Ra up to lo6 and 
found that, for Ra > 5 x IO’, oscillatory flow patterns 
of one-pair and two-pairs of counter rotating vortices 
appear along the axial direction. According to their 
result, the appearance of the two-pair vortices 
decreases the heat transfer rate. It is also noted that 
two values of Nusselt numbers obtained from local 
wall temperature gradient and axial energy balance 
used in refs. [7, 14, 1.51 deviate with each other for 
Ra > 5 x 10’. 

In practical engineering applications, the mixed 
convection flows with high Ra are frequently en- 
countered. For example, the Ra value for glycol is about 
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NOMENCLATURE 

;! 
tube radius -\ position of maximum stream function 
thermal conductivity -“I’ position of peak Nusselt number 

K a factor defined in equation (17) z,. position of full development. 

.Y gravity 

Gr Grashof number Greek symbols 
GI Graetz number, Gr = I/: thermal diffusivity 
M, N number of meshes ; thermal expansion coefficient 
Nu,, Nuz Nusselt numbers defined in ij_ A difference quantity 

equations (8) and (9) t: relative error 
P(R, d;). p pressure derivation due to H dimensionless temperature 

secondary flow, and the dimensionIess P 1’ dynamic viscosity 
PC> Peclet number, RePr 1 kinematic viscosity 
R, 6, Z cylindrical coordinates ii dimensionless vorticity 
r, 4, z dimensionless cylindrical coordinates. I’ density 

I” = Z/2aRePu i dimensionless stream function 
Ra Rayleigh number, ,qfi(rO - T,)a’/ccv V2 dimensionless Laplace operator, 
Re Reynolds number, 2aW,!r (I,lY)(i;l!(?T)(I.(?!i’Y)+(1:T?)(iz/(;;~2). 
Si7 Sherwood number 
T, TO, T, local temperature, uniform inlet Subscripts 

temperature and constant wall b bulk quantity 
temperature E, W, N, S. P grid points 

U, If. UI velocity conlponents in R. 4 and Z f fully developed quantity 
directions, respectively i, i nodal points 

U, L’, M‘ dimensionless veiocity in r. 4 and : 0 quantity at: = 0 
directions, respectively w condition at wall. 

Wr average axial velocity 

=c position of free convection effect based Superscripts 
on 2% deviation from that of P previous axial step 
Graetz solution mean value. 

I x 10’ in a 4 cm radius pipe with IOO’C temperature 
difference. In order to facilitate the industrial appli- 
cations, more analysis for high Rn is required. The 
attempt of the present study is to solve the laminar 
mixed convection heat transfer in an isothermal 
heated horizontal tube numerically for high Rayleigh 
numbers. To achieve the high Rayleigh number solu- 
tion in a sufficiently long range of I’, a weighting func- 
tion scheme [ 16, 17) and boundary- vorticity technique 
[18] are employed for solving the energy equation, 
and a control volume method developed in the present 
study is used lo evaluate the wail temperature gradient 
for the Nusselt number. 

2. THEORETICAL ANALYSIS 

2.1. Problem description 
It is well known that the Graetz solution is valid for 

pure forced convection heat transfer in a horizontal 
isothermal cooled tube. When the effect of natural 
convection is taken into account, the Graetz solutions 
are no longer applicable for Un 2 10’ [7, 13--I 51. In 
the present study, the tube wall temperature is lower 
than that of the inlet fluid ; the induced buoyant forces, 
due to the temperature gradient of fluid, cause a sec- 
ondary flow circulation upward at the tube center and 

downward near the wall vicinity. The combination of 
the forced main flow and the secondary flow sets up 
the forward moving spirals. The heat transfer 
coefhcient is known to be enhanced by the consequent 
mixing due to the secondary flow. Since the two spiral- 
like motion is symmetrical about the Y-axis, the 
geometry we calculate here is half circle only. The 
physical configuration is shown in Fig. I. The flow 
enters the tube with a fully developed parabolic vel- 

Fto. I. Physical configuration. 
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ocity and a uniform temperature, TO. To facilitate the 
analysis, the following basic ass~ptions are made : 

(1) steady, laminar, incompressible, and no viscous 
dissipation ; 

(2) constant thermophysical properties and the val- 
idity of Boussinesq approximation ; 

(3) small Grashof number, and large Prandtl and 
Peclet numbers. 

With the foregoing assumptions, the secondary flow 
velocities are small compared with the axial main flow 
velocity, and make no effect on the main flow velocity 
profile. The small secondary flow velocities are 
expected to be symmetry with respect to the vertical 
center plane and may have a signi~cant effect on heat 
transfer via the amplification of the large Prandtl num- 
ber. Physically, the large fluid viscosity suppresses the 
inertia terms in the momentum equations, and the 
small thermal diffusivity gives a relatively large con- 
vection term over the diffusions term in energy equa- 
tion. 

The following dimensionless transfo~ations and 
parameters are introduced 

R Z 
y=-- 

a’ Z=2aRe 

V 
u=------- V=-, 

i 0 Ra’ cx Ra 
a 

required. The developments of components u and v 
depend solely on the buoyancy force at each cross 
section. Equation (4) tells physi~lly the mechanism 
of the transport of heat. The heat is carried to the 
cross section by the axial convection, and then carried 
away convectively in the r- and 4- directions and 
finally conducted to the tube wall. 

One can combine equations (2) and (3) to drop 
the pressure terms by taking a cross-differentiation. 
Dimensionless stream function $ and vorticity t are 
defined and the final governing equations in dimen- 
sionless forms are : 

V2c= - 
( 
gsind+i$cos4 

> 
(6) 

V’$ = 5 (7) 

where 

It is obvious that both the vorticity transport equa- 
tion (6) and stream function equation (7) are of elliptic 
type and the energy equation (5) is of parabolic. The 
corresponding initial and boundary conditions are : 

P wr=L!$=?(I-rz), PC------- 

f Grpd 

(-3 a2 

W, 4,O) = 1 at inlet 

B(r, (p, I) = I/@, 4, 1) = ~~(~~’ I) = 0 

T- T, 
Q=------- 

To - T, ’ 
Ra = P,.G,. =ga(To-Tw)u3, 

RV 
on the tube wall 

According to refs. [7, 141, the dimensionless gov- 
erning equations are : 

aB(r, 6 z, = $(r, 4, z) = ,z(~, 9, z) = o 
34 

(1) 
along the vertical center plane. 

-;+ V%-f$-; +ecos+=o (2) 
( > 

From the above boundary conditions, one finds 
that the boundary condition of 5 at r = 1 is missing 
but there is one more boundary condition of y5 at 

1 aP --- 
r a# 

+ ~2~ - A* _ v 
r = 1. Thus one is able to solve equations (6) and 

r2 ad, 2 
+ 0 sin 4 = 0 (3) (7) simultaneously by using of the bounda~-vorticity 

method [ 187. 

where 

V2=ra rd +ld? 
( > r 8r dr r2 8~~5~’ 

It is seen that the cross sectional velocity com- 
ponents u and v from equations (2) and (4), respec- 
tively, do not affect the fully-developed main flow 
velocity wh due to weak secondary motion. Therefore, 
only a two-dimensional continuity equation is 

2.2. Nusselt number 
Due to the invariant axial main flow velocity, fric- 

tion factor is a constant and will not be discussed here. 
The variation of heat transfer coefficient si~ficantly 
affected by the buoyancy forces can be evaluated by 
using the local wall temperature gradient and axial 
temperature gradient. One can derive the local Nusselt 
number, Nu = (2a)h/k, as written in ref. [14]. 

(8) 
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(9) 

where 

is the dimensionless bulk temperature. 
The wall temperature gradient of equation (8) was 

computed by using a three-point backward finite 

difference scheme, 

ix 3&.,-40, I.,+(),+ z., 

i--i -- pr r., 2Ar ’ 

to evaluate Nu, in the previous studies [7, 141. This 
induces a large deviation from the local Nusselt num- 

ber of Nu, for Ra - O(106). In order to overcome 
this difficulty, the present study develops an improved 
numerical scheme for evaluating the wall temperature 

gradient. By the conservation principles of energy in 
a control volume near the wall as depicted in Fig. 2, 
one has 

El-E2+E3-E4+E5-E6 = 0 (10) 

where 

+ R,A4AZU,pC,T, 
H R. 

+ ARAZV,pC, T, 

+ ARAZ V,pC, T, 

E5 = R,A4ARW,pC,T, 

E6 = R,,A~ARW,,pC,T,,. 

From the conservation of mass, one gets 

@’ 

m T”bS 

. ‘ntermsdiats point 

. Comp”tat*on grid pint 0 E 1 

FIG. 2. Control volume for evaluating wall temperature 

pR,Ac$AZr/,+pARAZV,.-pARAZV, 

+pR,AqbARW,-pR,,A4ARW,,, = 0. (I I) 

One obtains the following dimensionless form after a 

rearrangement. 

Central finite difference schemes are used for the 
derivatives on the right hand side of equation (12). 
The quantities with lower case subscripts e and u 
are obtained from the average of four neighbor grid 
points. 

3. METHOD OF SOLUTION 

3.1. Di.ccwtizrttion of equutions 

The weighting function scheme [ 16. 171 is used to 
discretize the governing equations here. Since all ot 
the governing equations are elliptic type in r and (i, 
derivatives, we can discrete equations (5). (6) and (7) 
as 

Arf~l-+A\I,Hw+A~f~N+AsOs = ..ll.Up +;_ (13) 

BE;F + &i’w + B& f&J<\, + Bs& = B, (14, 

BF~~+Bw~w+Bp~p+BN~N+H~Il/s =h, (15) 

where the coefficients are listed in the Appendix. 
By introducing a factor K [16], the axial derivative 

of equation (13) at the present time step is discretized 

as 

where the superscript p denotes the value at the pre- 
vious step. When K = 1, equation (16) is a backward 
difference formula, and equation (13) becomes a fully 
implicit scheme. When K = 0.5. an average slope is 
used, and equation (13) becomes the Crank-Nicolson 
scheme. For 0.5 < K < I, different weighting of gradi- 
ents for the present and previous steps can be attained. 

In the present study, the factor K is selected from 
grid to grid in a cross section as 

K= l+(q-1.5)~’ when iJ=i< I (17) 

.v 
K=0.5 when q = f.a 1 

where,f’is a factor, assumef’= 0.1 is used in the present 
study, and s is ratio of present temperature derivative 
at the computation to that at the previous step, 
7 = (Mi?z)!(~?Bl&)~‘. In the region near the inlet. the 
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value K close to 1 gives a more stable solution, the 
value close to 0.5 offers a more accurate solution and 
is used near the fully developed region. Equation (5) 
is singular at the tube center, r = 0, and the discretized 
equation (15) can not be used. In order to avoid the 
singularity, a finite difference equation based on Car- 
tesian coordinates is used, and the energy equation 
(5) is solved explicitly at the center point. 

Energy equation (5) is solved for temperature by a 
step by step marching technique from the tube inlet 
to the fully developed region. Local values of 41, and 5 
are then solved by the resulting local temperature. 
Near the tube inlet, the axial gradient of temperature 
near the tube wall is large and a very small axial step is 
required for an accurate solution. in the downstream 
region, temperature variation is not distinct and a 
larger step is allowable. Thus, a continuously increas- 
ing unequal axial step is used in the present study. 
For Ra 6 106, the axial step sizes are varied from 
AZ = I x lo-’ near the entrance to 3 x 1O-4 for 
Z > 0.2, the step sizes for lo6 -=z Ra < 10’ are 
AZ = 1O-8 - 10s4 and for Ra > lo7 the step sizes are 
AZ = lo-* - 5 x 10-j. 

As mentioned previously, the boundary condition 
of vorticity < at r = 1 is not available. Therefore, the 
vorticity transport equation (6) should be solved sim- 
ultaneously with equation (7) by using a line iteration 
and the boundary vorticity method [ 181. 

The numerical procedure for solving equations (5)- 
(7) with the associated boundary conditions is listed 
below. 

l.Set$-l=~==$=u=o=Oatz=O. 
2. Apply 5, I++, u and u at the previous axial step, 

and solve equation (5) for the temperature at the 
present step. 

3. Solve the vorticity transport and the stream- 
vorticity equations (6) and (7) simultaneously by 
using the boundary vorticity method. A relaxation 
factor of 1.74 is tested and the iteration of 4 and $ at 
present axial position is terminated when the stream 
function $ satisfies the criterion. 

4. Repeat steps 2 and 3 until z = 0.8 is reached. 

A uniform grid system is applied in the present 
study. Grid size tests were carried out for Ru = 106, 
5 x IO’, IO’, lOa and 5 x IO’. Tables 1 and 2 show the 
results of the typical grid test for Ra = lo7 and 5 x IO’, 
respectively. In the present study, 31 x 3 1 (Nx IM) 
grids are used for the cases of Ra < 106, 41 x 31 grids 
for Ra = Sx 106, 51 x31 grids for Ra = lo’, 71 x31 
grids for Ra = 5 x 10’ and lo*, and 101 x 31 grids for 
Ra = 5 x IO*. It is seen in Table 1 that the differences 
in NM, between 51 x 31 and finer grid system are 
around 1%. For Ra = 5 x 1 OS, this value is relaxed up 

to around 3% as shown in Table 2. To verify further 
the accuracy of the values of Nu, by the control vol- 
ume method, the values of Nu numbers obtained by 
using the control volume method, 3-point finite 
difference scheme and axial temperature gradient as 
shown in equation (9) are compared as shown in Table 
3. It is seen that the present control volume method 
drastically reduces the difference with that from equa- 
tion (9) as compared with that from 3-point finite 
difference scheme. In the present study, Nu, obtained 
by using the control volume method is used for the 
present study. Note that the evaluation of NuZ is based 
on equation (9) 

4. RESULTS AND DISCUSSION 

To depict the typical axial development of flow 
and temperature fields for high Ra Fig. 3 shows the 
streamline patterns and isotherms at various axial 
locations for Ra = 10’. It is seen that the isotherms 
are concentric circles in the beginning of the entrance 
region and are gradually distorted upward near the 
tube bottom and center further downstream due to 
upward buoyancy flow effects. High temperature fluid 
in the core region moves upward and the cooled fluid 
near wall moves downward. Therefore, the isothe~s 
are closely spaced near the top of the tube and sparsely 
spaced near the tube bottom. This indicates that there 
is high wall heat flux in the upper semicircle and low 
heat flux in the lower semicircle. When the thermally 
fully developed region is reached, the buoyancy effect 
diminishes, and the isotherms return to the pattern of 
concentric circles with constant spacing. 

Since the secondary flow is independent of the main 
flow velocity component, the secondary flow pattern 
depends only on the local temperature field. As shown 
in Fig. 3, the flow patterns near the inlet and in the 
fully developed region are symmetric with respect to 
the horizontal center plane, because of small buoy- 
ancy effects. In other locations, the symmetry is lost 
due to the distortion of isotherms. Also, from Fig. 3, 
one finds that the location of vortex center rep- 
resenting the maximum stream function is moved 
downward from the center plane first and then moved 
upward to the upper semicircle. Finally, when the fully 
developed region is reached, it is restored to the center 
plane. The variation of the location of the vortex 
center with the corresponding Z, and z,r is displayed 
in Fig. 4. For lower Ra, the center moves around in 
the vicinity of the horizontal center plane. For higher 
Ra, the center moves further to the upper part of 
circular tube, and then moves back to the horizontal 
center plane when the thermal fluid flow is fully 
developed. 

Figure 5 shows the variation of local Nusselt num- 
ber with the Graetz number (inverse of dimensionless 
z) for Ra ranging from 0 to 5 x IO’. With the effect of 
buoyancy, the Nusselt number deviates from the curve 
of Graetz solution and when the fully developed 
region is reached, the Nusselt number merges with the 
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Table I. Numerical experiment of grid systems for Ra = 10’ 

?These values are ivu, and evaluated by using equations (8) and (13). 
$The grid size is used in the present study. 

Table 2. Numerical experiment of grid systems for Ra = 5 x IO' 
_..__.~__ .-. ._~~~.~_~~ .-.._ ..---. .~~.~~ -- --._. ..-.-..-.-_~. -_.. __ .~~~~ 
2 0.00001 0.000~5 0.000~ 0.0005 0.001 0.00s 

_~ __-. ~___ ~~~ -- - -- 
(NxM) 
91 X 31 138.351. 136.22 136.33 145.18 _ 
101 x 311: 133.28 130.4 130.02 136.93 141.61 X8.51 
101 x41 133.06 130.04 129.64 137.23 142.81 91.00 
III x31 130.12 126.77 IX.99 131.41 136.01 88.53 
______._._.____~_..__ ..-_..-. ~-- - -...- -..-. ._~ ---- ^ -~ ~~~- --- -- --- -~ 

?These values are Nu, and evaluated by using equations (8) and (12). 
$The grid size is used in the present study. 

Table 3. Comparison of [(.h’u, - Ntrl):NuZ] x 100% 
~~ -* .._~ .~_. 

; 0.000l 0.001 0.01 0. 1 
_.- .~.._~ _ _.__.._..~~ ~-~ 

Ra = IO" 0.54f (6.95): 0.12 (0.6) 0.16 (0.95) 0.09 (0.03) 
Ra= IO6 3.26 (13.99) 3.70 (15.09) 3.81 (9.82) 0.15 (0.34) 
Ra= 10' 5.21 (19.54) I.91 (18.06) 2.78 (7.52) 0.04 (0.03) 

.--. . ..-.. ~~~- -..-. --.. --- -..-... 
*The Nu, are from the control volume method as shown in equation (12). 
$The Nu, used are from S-point finite difference scheme. 

curve again. In contrast to the results of previous 
investigations, the present study achieves the solution 
for Ru up to about 2 or 3 orders of magnitude higher 
than the previous ones. Wide ranges of Gz are found 
for almost constant value of Nusselt number. The 
constant value of Nu can be correlated by Nu, = 0.626 
RLI',~"~ with an error of 1.4% from the present numeri- 
cal data for Ra > lo’. Experimental data of Hwang 
and Chen [20] in electrochemical system are also plot- 
ted for compatison. The Sherwood number Si? in mass 
transfer is analogous to the Nusselt number in heat 
transfer. There is a root mean square difference of 
17% between the experimental data and the interp- 
olation data of present results for Ra = 2.69 x IO’ and 
17.5% for Ra = 2.628 x IO’. 

Although the comparison was made in the literature 
between the numerical and experimental data for 
Ra s 106, Fig. 6 also makes a comparison of Nusselt 
number with data from refs. [6, 191 and Oliver [4]. 
The root mean square difference for data of Depew 
[6] are within 17%. Especially, an excellent agree- 
ment is found for water with Ra = 1.06 - 1.16 x IO5 
and for ethyl and alcohol solution with Ra = 1.00 
- 1.76 x 10”. The root mean square differences are 

6.5% for the former case and 4.5% for the latter. For 
data of Depew and Zenter [19] and Oliver [4], good 
agreement is also found. 

The variation of bulk temperature is shown in Fig. 
7. One finds that all the bulk temperature curves start 
from oh = 1 at z = 0 and are parallel with each other 
in the fully developed region. The slope of these lines 
is identical to that of Graetz solution. Since all the 
lines are regularly spaced in the fully developed region. 
the bulk temperature ~~(Ru,~} can be correlated as 
@,(Ra,z) = 0.8 19 exp(7.54-0.92 x In(Ru) - 14.6;) for 
Ra 2 5 x 105. Some data of the correlation are plotted 
in Fig. 7 for comparison. The root mean square 
difference of correlated data and that of the present 
study is about 2.7%. 

Since the present study extends the solution to three 
orders higher in Ra and one order longer in :, one is 
able to identify some important axial positions charac- 
terizing the Nusselt number curve, as shown in Fig 8. 
3, indicates the position with 2% higher in NM than 
that of pure forced convection. z, shows the position 
with maximum value of stream function. It is inter- 
esting to see that the region with constant Nu also 
starts from this position region. z,,, depicts the position 



Laminar convective heat transfer 1637 

FIG. 3. Development of streamline patterns and isotherms for Ra = 10'. 

with peak value in the Nusselt number. zr is the pos- 
ition with a fully developed Nusselt number. When 
z < z,, the Graetz solution is valid. At z > z,, the NU 
is declining because the entrance effect is greater than 
the natural convection effect in this region. When 
z > z,, the natural convection overcomes the decrease 
of entrance effect. The Nu is almost invariant with z 
until the location z,,~ for the peak Nu number with 
largest natural convection effect is reached. After znpr 
both the natural convection and the entrance effect 
are declining, the Nu drops rapidly. When z = zr is 
reached, the Nusselt number merges with the fully 
developed value, and both the natural convection 
effect and entrance effect vanish. In Fig. 8, the open 
circles are points taken from the numerical data, and 

the solid lines are the linear correlation of the data 
points. They are 

z c = 2.84 Ra-0~820 

z s = 2.85 Ra-0.720 

znp = 0.248 Ra-0.275. 

The root mean square difference predicted by the 
correlations are within 9.2% for z,, 4.8% for z,, and 
5.7% for znP. The solid circles are the points for the 
entrance lengths required to achieve the fully 
developed Nu = 3.6. The values of zr vary from 0.2 
for Ra = lo3 to 0.36 for Ra > 5 x 10’. For z > zr the 
fully developed region or Nu = 3.6 is achieved for all 
Ra. 
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. 
0 

--. 

start point 
end point 

\ 

FIG. 4. Variation of location of maximum stream function. 

(Sh) 2 
Nu, 

10’ 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
z 

FIG. 7. Bulk temperature ii, variation with r. 

z 
FIG. 8. The axial positions characterizing the ?iu curves. 

FIG. 5. Local Nusselt number variation with C: for Ra = 
O- 5 x 1 OK and comparison with experimental dat;i. 

5 lo-3 5 10-Z 5 10-1 5 8 

FE. 6. Comparison of local Nusselt number with exper- 
imental data for Iicr = O-IO*. 

103 5 lo4 5 so5 5 108 5 10’ 5 108 5 

Ra 

FE. 9. Nusselt number variation in I^, $ r < z,,, 
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It is interesting to see in Figs. 5 and 6 that the values 

of Nu in the region z, < z < z,r are almost constant, 
and the curves of Nu are almost regularly spaced for 
high Ra. The Nusselt number correlation in this region 
is shown in Fig. 9. The open circles are points taken 
numerically at the arithmatic average of the peak and 
lower values of the Nusselt number. The correlation 
is Nu, = 0.626 Ra0.269 and only a few percent difference 
is observed. 

5. CONCLUSIONS 

1. By utilization of weighting function scheme and 
the control volume method for evaluation of Nu, the 

present study obtains Nu for Ra up to 5 x 10’ in a 
range of z = O-0.8. This extends the solution to three 
orders higher in Ra and one order longer in z than 
those in the literature. 

2. As a result of this study, several axial positions 
characterizing the Nusselt number curve for each Ra 

are identified. The variations of z,, z,, z,r and zr with 
Rayleigh numbers are correlated. 

3. The Nusselt numbers are found almost invariant 
in the range between z, and z,r. A correlation of Nu 
in this range with Ra is also made, and only a few 
percent deviation is observed. 
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APPENDIX 

2%;+ f&V F@,+ ‘4) 
A, = 

r:(l -rf)(Ad)2 ’ 
B, = z 

rf@+)z 

A, = 
2F(-a,_fA4) 

Bw = 
F(-b,_fA+) 

r:(l -$)(Ad)* ’ row)* 
2F(a,+ +Ar) F(b,+ IAr) 

AN = 
(1 -rf)(Ar)’ ’ 

B, = z 

W)* 

As = 
2F( - a,_ ;Ar) 

BS = 
F(-b,_fAr) 

(1 -r:)(Ar)* ’ WY 

AP = (A,+Aw+A,+A& 

BP = -(&+B,+B,+B,) 

B, = - 
ON-& 
psm+,+ 

lb& 
2(Ar) 

pcos#+ 
2r,(W) 

, b, = 5p 

where 

F(z) = ~~,~~-o.~~I~l~5~l+~o,zl 

[x, y] : means maximum of x and y 

a,+’ = r,Ru lClN--s+*EN-*ES 
2 ’ 4Ar 
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a_i=rRa h-~s+*w-!k 
‘2 ’ 

i 4Ar 


